Posts Tagged ‘Google’

Google Researchers Use End-to-End Neural Network To Caption Pictures

pizzaGoogle researchers have announced the development of a machine-learning system that can automatically produce captions to accurately describe images in properly formed sentences the first time it sees them.

“This kind of system could eventually help visually impaired people understand pictures, provide alternate text for images in parts of the world where mobile connections are slow, and make it easier for everyone to search on Google for images,” report research Scientists Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan in a blog about how they’re building a neural image caption generator.

Getting there, the researchers say, involved merging recent computer vision and language models into a single jointly trained system that can directly produce a human readable sequence of words to describe a given image. The task is no easy one, they point out, explaining that unlike image classification or object recognition on its own, their work has to account not only for the objects contained in the image, but also for expressing how these objects relate to each other, as well as their attributes and the activities they are involved in.

The approach leverages an end- to-end neural network that can automatically view an image and generate a plan English description of it.

Read more

Google Partners with Oxford on NLP and Image Recognition Research

deepmindBen Woods of The Next Web reports, “Google has joined forces with the University of Oxford in the UK in order to better study the potential of artificial intelligence (AI) in the areas of image recognition and natural language processing. The hope is that by joining forces with an esteemed academic institution, the research will progress more rapidly than going it alone for its DeepMind project. In total, Google has hired seven individuals (who also happen to be world experts in deep learning for natural language understanding), three of which will remain as professors holding joint appointments at Oxford University.” Read more

How Andrew Ng is Monetizing Deep Learning at Baidu

Baidu logoCade Metz of Wired recently wrote, “Deep learning can do many things. Tapping the power of hundreds or even thousands of computers, this new breed of artificial intelligence can help Facebook recognize people, words, and objects that appear in digital photos. It can help Google understand what you’re saying when you bark commands into an Android phone. And it can help Baidu boost the bottom line. The Chinese web giant now uses deep learning to target ads on its online services, and according to Andrew Ng—who helped launch the deep learning operation at Google and now oversees research and development at Baidu—the company has seen a notable increase in revenue as a result. ‘It’s used very successfully in advertising,’ he says, sitting inside the company’s U.S. R&D center in Sunnyvale, California. ‘We have not released revenue numbers on the specific impact, but it is significant’.” Read more

Google’s Machine Learning Can Fill in Your Spreadsheet For You

googleJordan Novet of Venture Beat reports, “Many people know Google first and foremost as a search engine company. But really it’s a machine-learning company, using data to make predictions that get incorporated into applications like search and advertising without people even realizing it. Today Google is announcing in a blog post that people can now choose to apply its machine-learning savvy to Google Sheets, the company’s spreadsheet app, to make educated guesses and fill in blank cells. This applied use of machine learning follows Microsoft’s recent announcement of a cloud-based service for that purpose, Azure Machine Learning.” Read more

AlchemyAPI’s New Face Detection And Recognition API Boosts Entity Information Courtesy Of Its Knowledge Graph

AlcaclhinfohemyAPI has released its AlchemyVision Face Detection/Recognition API, which, in response to an image file or URI, returns the position, age, gender, and, in the case of celebrities, the identities of the people in the photo and connections to their web sites, DBpedia links and more.

According to founder and CEO Elliot Turner, it’s taking a different direction than Google and Baidu with its visual recognition technology. Those two vendors, he says in an email response to questions from The Semantic Web Blog, “use their visual recognition technology internally for their own competitive advantage.  We are democratizing these technologies by providing them as an API and sharing them with the world’s software developers.”

The business case for those developers to leverage the Face Detection/Recognition API include that companies can use facial recognition for demographic profiling purposes, allowing them to understand age and gender characteristics of their audience based on profile images and sharing activity, Turner says.

Read more

Harnessing the Power of Deep Learning

5621803163_5772be9d8cCade Metz of Wired reports, “When Google used 16,000 machines to build a simulated brain that could correctly identify cats in YouTube videos, it signaled a turning point in the art of artificial intelligence. Applying its massive cluster of computers to an emerging breed of AI algorithm known as ‘deep learning,’ the so-called Google brain was twice as accurate as any previous system in recognizing objects pictured in digital images, and it was hailed as another triumph for the mega data centers erected by the kings of the web.” Read more

You Can Take An Active Role In Schema.Org

brickHave you wanted to get involved in the schema.org project? Your contribution to the collaborative effort driven by Bing, Google, Yahoo and Yandex for a shared markup vocabulary for web pages is more than welcome. As Dan Brickley, who is developer advocate at Google, noted during his presentation about schema.org’s progress to date at this summer’s Semantic Technology & Business Conference, the “pattern of collaboration with the project [is] we’re trying to push work off on people who are better qualified to do it, and then we mush it all together.”

What is meant by that is that the project is so broad, covering such a huge amount of topics, that the input of experts – whether from the library, media, sports or any other of the multitude of communities whose vocabularies are or aim to be represented – is incredibly valuable, and very much encouraged. In an overview of the 2013-2014 releases, which included TV/radio, civic services, and bibliographic additions, as well as accessibility properties, among others, Brickley related that during the year, “We listened a lot. We listened to people who knew better than us about accessibility, about how broadcast TV and radio are described, about describing social services, about libraries, journals, and ecommerce, and then integrated their suggestions into a unified set of schemas.”

Read more

Google’s Knowledge Graph Now Mines Facts from Data Tables

Google HummingbirdJosh Ong of The Next Web reports, “Google today revealed details behind a new search feature called Structured Snippets that displays information pulled from data tables on webpages. The feature actually began rolling out last month, but the company’s research team explained the technology in a post today. The search engine has been progressively adding new information through its Knowledge Graph database. This latest feature adds more data below the snippets of text in a search query.” Read more

Schema.Org: The Fire’s Been Lit

schemaorgadoptspecificWhy has schema.org made the following strides since its debut in 2011?

  • In a sample of over 12 billion web pages, 21 percent, or 2.5 billion pages, use it to mark up HTML pages, to the tune of more than 15 billion entities and more than 65 billion triples;
  • In that same sample, this works out to six entities and 26 facts per page with schema.org;
  • Just about every major site in every major category, from news to e-commerce (with the exception of Amazon.com), uses it;
  • Its ontology counts some 800 properties and 600 classes.

A lot of it has to do with the focus its proponents have had since the beginning on making it very easy for webmasters and developers to adopt and leverage the collection of shared vocabularies for page markup. At this August’s 10th annual Semantic Technology & Business conference in San Jose, Google Fellow Ramanathan V. Guha, one of the founders of schema.org, shared the progress of the initiative to develop one vocabulary that would be understood by all search engines and how it got to where it is today.

Read more

Baidu Takes on Artificial Intelligence

Baidu logoDaniel Sparks of The Motley Fool reported, “”Chinese companies are starting to dream,” said early investor in Baidu (NASDAQ: BIDU  ) and managing partner at GGV Capital Jixun Foo. Foo’s proclamation was made in an in-depth article by MIT Technology Review, which examined the Chinese search giant’s new effort to change the world with artificial intelligence. The company’s new AI lab does, indeed, accompany some lofty aspirations — ones big enough to hopefully help Baidu become a global Internet powerhouse and to compete with the likes of Google in increasingly important emerging markets where the default search engine hasn’t yet taken the throne. But what are the implications for investors? Fortunately, Baidu’s growing infatuation with AI looks like it could give birth to winning strategies that could build sustainable value over the long haul.”

Read more

NEXT PAGE >>